Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning
نویسندگان
چکیده
Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely.
منابع مشابه
Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials.
Superhydrophobic sponges and sponge-like materials have attracted great attention recently as potential sorbent materials for oil spill cleanup due to their excellent sorption capacity and high selectivity. A major challenge to their broad use is the fabrication of superhydrophobic sponges with superior recyclability, good mechanical strength, low cost, and manufacture scalability. In this stud...
متن کاملA self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.
Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a...
متن کاملSynthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles
Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant f...
متن کاملA Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy
The frequent oil spillages and the industrial discharge of organic contaminants have not only created severe environmental and ecological crises, but also cause a risk of fire and explosion. These environmental and safety issues emphasize the urgent need for materials that possess superior sorption capability and less flammability and thus can effectively and safely clean up the floating oils a...
متن کاملNatural insect and plant micro-/nanostructsured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties.
Insects and plants are two types of organisms that are widely separated on the evolutionary tree; for example, plants are mostly phototrophic organisms whilst insects are heterotrophic organisms. In order to cope with environmental stresses, their surfaces have developed cuticular layers that consist of highly sophisticated structures. These structures serve a number of purposes, and impart use...
متن کامل